Mycobacterium tuberculosis Malate Synthase Structures with Fragments Reveal a Portal for Substrate/Product Exchange*
نویسندگان
چکیده
Fragment screening and high throughput screening are complementary approaches that combine with structural biology to explore the binding capabilities of an active site. We have used a fragment-based approach on malate synthase (GlcB) from Mycobacterium tuberculosis and discovered several novel binding chemotypes. In addition, the crystal structures of GlcB in complex with these fragments indicated conformational changes in the active site that represent the enzyme conformations during catalysis. Additional structures of the complex with malate and of the apo form of GlcB supported that hypothesis. Comparative analysis of GlcB structures in complex with 18 fragments allowed us to characterize the preferred chemotypes and their binding modes. The fragment structures showed a hydrogen bond to the backbone carbonyl of Met-631. We successfully incorporated an indole group from a fragment into an existing phenyl-diketo acid series. The resulting indole-containing inhibitor was 100-fold more potent than the parent phenyl-diketo acid with an IC50 value of 20 nm.
منابع مشابه
Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase.
The glyoxylate shunt plays an important role in fatty acid metabolism and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of phenyl-diketo acid (PDKA) inhibitors of mal...
متن کاملModeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M
There are enormous evidences and previous reports standpoint that the enzyme of glyoxylate pathway malate synthase G (MSG) is a potential virulence factor in several pathogenic organisms, including Brucella melitensis 16M. Where the lack of crystal structures for best candidate proteins like MSG of B. melitensis 16M creates big lacuna to understand the molecular pathogenesis of brucellosis. In ...
متن کاملBiochemical Analysis of the NAD+-Dependent Malate Dehydrogenase, a Substrate of Several Serine/Threonine Protein Kinases of Mycobacterium tuberculosis
PknD is one of the eleven eukaryotic-like serine/threonine protein kinases (STPKs) of Mycobacterium tuberculosis (Mtb). In vitro phosphorylation assays with the active recombinant PknD showed that the intracellular protein NAD+-dependent malate dehydrogenase (MDH) is a substrate of this kinase. MDH, an energy-supplying enzyme, catalyzes the interconversion of malate and oxaloacetate and plays c...
متن کاملBiochemical and structural studies of malate synthase from Mycobacterium tuberculosis.
Establishment or maintenance of a persistent infection by Mycobacterium tuberculosis requires the glyoxylate pathway. This is a bypass of the tricarboxylic acid cycle in which isocitrate lyase and malate synthase (GlcB) catalyze the net incorporation of carbon during growth of microorganisms on acetate or fatty acids as the primary carbon source. The glcB gene from M. tuberculosis, which encode...
متن کاملStructural basis for phosphatidylinositol-phosphate biosynthesis
Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 291 شماره
صفحات -
تاریخ انتشار 2016